Хроматограф жидкостный
Самыми распространенными хроматографическими системами являются системы, имеющие модульный принцип сборки. Насосы, дегазирующие устройства, детекторы, дозаторы (автосамплеры), термостаты для колонок, коллекторы фракций, блоки управления хроматографической системой и регистрирующие устройства выпускаются в виде отдельных модулей. Широкий выбор модулей позволяет гибко решать различные аналитические задачи, быстро менять при необходимости конфигурацию системы с минимальными расходами. Вместе с тем выпускаются и мономодульные (интегрированные) ЖХ, главным преимуществом которых является миниатюризация отдельных блоков, компактность прибора.
В зависимости от способа элюирования жидкостные хроматографы делятся на изократические и градиентные.
Схема изократического хроматографа
Подвижная фаза из емкости (1) через входной фильтр (9) подается прецизионным насосом высокого давления (2) в систему ввода образца (3) - ручной инжектор или автосамплер, туда же вводится проба. Далее, через in-line фильтр (8), образец с током подвижной фазы поступает в элемент (элементы) разделения (4) - через предколонку в разделительную колонку. Затем, элюат поступает в детектор (5) и удаляется в сливную емкость (7). При протекании элюата через измерительный контур детектора происходит регистрация хроматограммы и передача данных на аналоговый регистратор (самописец) (6) или иную систему сбора и обработки хроматографических данных (интегратор или компьютер). В зависимости от конструкции функциональных модулей управление системой может осуществляться с клавиатуры управляющего модуля (как правило насоса или системного контролера), с клавиатур каждого из модулей системы или производиться управляющей программой с персонального компьютера.
В случае градиентного элюирования используются два принципиально различных типа жидкостных хроматографов. Они отличаются точкой формирования градиента состава подвижной фазы.
Схема градиентного хроматографа с формированием градиента состава подвижной фазы на линии низкого давления.
Подвижная фаза из емкостей (1) через входные фильтры (9) и программатор градиента (10) подается прецизионным насосом высокого давления (2) в систему ввода образца (3) - ручной инжектор или автосамплер, туда же вводится проба. Работой клапанов программатора градиента управляет либо управляющий модуль системы (насос или контроллер), либо управляющая программа ПК. Системы такого типа формируют бинарный, трехмерный и четырехмерный градиент. Форма функции отработки градиента зависит от конкретного управляющего модуля или программы управления, а также функциональных возможностей управляемых и управляющих модулей. Далее, через in-line фильтр (8), образец с током подвижной фазы поступает в элемент (элементы) разделения (4) - через предколонку в разделительную колонку. Затем, элюат поступает в детектор (5) и удаляется в сливную емкость (7). При протекании элюата через измерительный контур детектора происходит регистрация хроматограммы и передача данных на аналоговый регистратор (самописец) (6) или иную систему сбора и обработки хроматографических данных (интегратор или компьютер). В зависимости от конструкции функциональных модулей управление системой может осуществляться с клавиатуры управляющего модуля (как правило, насоса или системного контролера), или производиться управляющей программой с персонального компьютера. В случае управления управляющим модулем возможно независимое управление детектором с его собственной клавиатуры.
Несмотря на кажущуюся привлекательность таких систем (в них используется всего лишь один прецизионный насос высокого давления), данные системы обладают рядом недостатков, среди которых основным, пожалуй, является жесткая необходимость тщательной дегазации компонентов подвижной фазы еще до смесителя низкого давления (камеры программатора градиента). Она осуществляется с помощью специальных проточных дегазаторов. Из-за этого факта стоимость их становится сравнимой с другим типом градиентных систем - систем с формированием состава градиента подвижной фазы на линии высокого давления.
Принципиальным отличием систем с формированием состава градиента подвижной фазы на линии высокого давления является смешение компонентов в линии высокого давления, естественно, что при данном подходе количество прецизионных насосов определяется количеством резервуаров для смешивания подвижной фазы. При таком подходе требования к тщательности дегазации компонентов существенно снижаются.
Схема градиентного хроматографа с формированием градиента состава подвижной фазы на линии высокого давления.
Подвижная фаза из емкостей (1) через входные фильтры (9) подается прецизионными насосами высокого давления (2 и 11) через статический или динамический смеситель потока (10) в систему ввода образца (3) - ручной инжектор или автосамплер, туда же вводится проба. Работой управляемых насосов управляет либо управляющий модуль системы (насос “master pump” или контроллер), либо управляющая программа ПК. В этом случае все насосы являются управляемыми. Системы такого типа формируют бинарный или трехмерный градиент. Форма функции отработки градиента зависит от конкретного управляющего модуля или программы управления, а также функциональных возможностей управляемых и управляющих модулей. Далее, через in-line фильтр(8), образец с током подвижной фазы поступает в элемент (элементы) разделения (4) - через предколонку в разделительную колонку. Затем элюат поступает в детектор (5) и удаляется в сливную емкость (7). При протекании элюата через измерительный контур детектора происходит регистрация хроматограммы и передача данных на аналоговый регистратор (самописец) (6) или иную систему сбора и обработки хроматографических данных (интегратор или компьютер). В зависимости от конструкции функциональных модулей управление системой может осуществляться с клавиатуры управляющего модуля (как правило, насоса или системного контролера), или производиться управляющей программой с персонального компьютера. В случае управления управляющим модулем возможно независимое управление детектором с его собственной клавиатуры.
Предложенные схемы являются достаточно упрощенными. В состав систем могут быть включены дополнительные устройства - термостат колонок, системы постколоночной дериватизации, системы пробоподготовки и концентрирования образца, рециклер растворителя, мембранные системы подавления фоновой электропроводности (для ионной хроматографии), дополнительные защитные системы (фильтры, колонки) и т.д. На схемах, также отдельно не показаны манометрические модули. Как правило, эти устройства встраиваются в насосные блоки. Эти блоки могут объединять в себе несколько насосов, насос с программатором градиента, а также общий системный контроллер. Структура системы зависит от ее комплектации и каждого конкретного производителя.
Такое радикальное усложнение технического сопровождения хроматографического процесса приводит к возникновению ряда требований к свойствам подвижной фазы, отсутствующих в классической колоночной и планарной хроматографии. Жидкая фаза должна быть пригодна для детектирования (быть прозрачной в заданной области спектра или иметь низкий показатель преломления, определенную электропроводность или диэлектрическую проницаемость и т.д.), инертна к материалам деталей хроматографического тракта, не образовывать газовых пузырей в клапанах насоса и ячейке детектора, не иметь механических примесей.